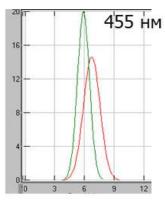
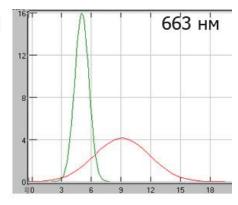


ВЫБОР ИНФОРМАТИВНЫХ ПРИЗНАКОВ ДЕШИФРИРОВАНИЯ АНТРОПОГЕННЫХ ОБЪЕКТОВ НА МНОГО- И ГИПЕРСПЕКТРАЛЬНЫХ ИЗОБРАЖЕНИЯХ

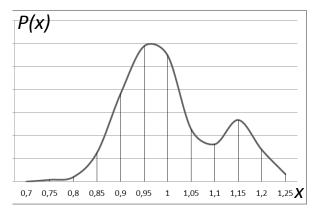

Григорьева О.В., Марков А.В., Саидов А.Г.


АЛГОРИТМ ВЫБОРА СОВОКУПНОСТИ ИНФОРМАТИВНЫХ ПРИЗНАКОВ ОБЪЕКТОВ НА АЭРОКОСМИЧЕСКИХ ИЗОБРАЖЕНИЙ

АЛГОРИТМ ВЫБОРА СОВОКУПНОСТИ ИНФОРМАТИВНЫХ ПРИЗНАКОВ ОБЪЕКТОВ НА АЭРОКОСМИЧЕСКИХ ИЗОБРАЖЕНИЙ

Функция плотности распределения признака подчиняется нормальному закону распределения

$$p(x|\omega) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$


Расчет расстояния между признаками для каждой пары объект-фон

$$H., J_{ij} = \left\{ \int \left[\sqrt{p(x|\omega_i)} - \sqrt{p(x|\omega_j)} \right]^2 dx \right\}^{1/2}$$

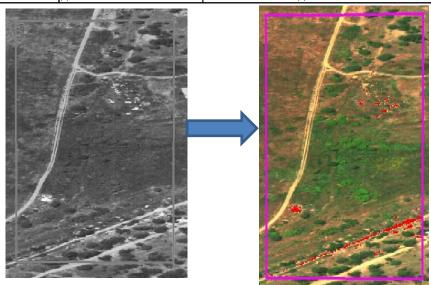
Вероятность ошибки ho_E при равной априорной вероятности объекта и фона

$$\frac{1}{16(2-J^2)^2} \le \rho_E \le 1 - 1/2(1 + \frac{1}{2J^2}).$$

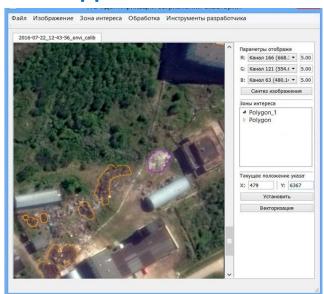
Функция плотности распределения признака отлична от нормальной

Используется метод Парзена-Розенблатта:

$$p(x|\omega) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{\rho(x_i x_i)}{h})$$


Расчет усредненного расстояния

$$J_{\rm cp} = \sum_{j=1}^{m} p(w_i) (1 - p(w_i)) J_{ij}$$


$$\begin{cases} Q_1 = \frac{1}{\sigma_{\alpha 1} \sqrt{2\pi}} \int_{\alpha_0}^{\infty} e^{-0.5 \left[\frac{\alpha - m_{\alpha 1}}{\sigma_{\alpha 1}}\right]^2 d\alpha}, \\ Q_2 = \frac{1}{\sigma_{\alpha 2} \sqrt{2\pi}} \int_{\alpha_0}^{\infty} e^{-0.5 \left[\frac{\alpha - m_{\alpha 2}}{\sigma_{\alpha 2}}\right]^2 d\alpha}. \end{cases}$$

ПРИМЕР ФОРМАЛЬНОЙ ИНФОРМАЦИОННО-ПРИЗНАКОВОЙ МОДЕЛИ МЕСТ НЕСАНКЦИОНИРОВАННОГО СКЛАДИРОВАНИЯ ОТХОДОВ И ЕЕ ПРИМЕНЕНИЯ

Обозначение	Наименование признака
признака	
F_1	Первые максимальные абсолютные коэффициенты дискретного
	преобразования Уолша-Адамара, вычисленные на соответствующих
	масштабах секвенты
F_2	Вегетационные индексы (NDVI и т.п.)
F_3	Длины волн, на которых происходит переход графика второй
	производной свертки функции исходного спектра с гауссовым фильтром
	ширины 1,8 через ноль
F_4	Среднеквадратического отклонения значений яркости
F_5	Максимум, среднее значение и дисперсия значений амплитудной и
-	осевой функций частоты и угла, полученных в результате Фурье-
	преобразования
F_6	Коэффициенты спектральной яркости в диапазоне спектра 400-1000 нм
F ₇	Положительный яркостной контраст с фоном в красной полосе спектра
	для свалок бытовых и строительных отходов

Гиперспектральные данные, разрешение на местности 2 м. Вероятность идентификации 0,88

Многоспектральные данные, разрешение на местности 0,5 м. Вероятность идентификации 0,91

Подбор признаков под имеющиеся данные аэрокосмической съемки (учитывается спектральное разрешение, линейное разрешение данных и спектральный диапазон съемки)